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Abstract
Far memory tiers improve memory utilization by enabling memory
intensive applications to use idle memory from other machines over
the network. Recently, compiler approaches to far memory have
demonstrated how static analysis can be leveraged to automatically
transform applications to make efficient use of remote memory
tiers. However, policies in these compilers, e.g., the determination
of whether objects should be remoted, prefetched, or evacuated are
made conservatively at compile time or require profiling. While
profiling can alleviate conservative policies, profile-guided systems
can be expensive and may not work well for applications that
have variation in their inputs. We propose CaRDS, system that
combines both runtime and static analysis to determine far memory
policies dynamically, at data structure granularity, and without
profiling. CaRDS remoting policies can outperform prior automatic
approaches by up to ∼2× and are within 25% of profile-guided
systems when the local memory is highly constrained.

CCS Concepts
• Software and its engineering → Retargetable compilers;
Virtualmemory;Allocation / deallocation strategies;Garbage
collection; • Hardware→ Dynamic memory.
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1 Introduction
Software memory disaggregation is an increasingly popular tech-
nique that aims to improve memory utilization by leveraging un-
used memory (far memory) from neighbouring machines over fast
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interconnects, primarily to accommodate memory intensive appli-
cations [19, 27]. For applications with amenable memory access
patterns, far memory systems can perform similar to a setup with
only local memory. Contemporary software-based implementa-
tions fall into three categories: the most common repurposes the
swap subsystem in the OS to fetch remote objects in response
to page faults. While the developer need not modify code to run
on such a system (thus achieving full transparency), the perfor-
mance overheads can be significant, primarily due to frequent page
faulting [3, 10, 24, 25, 30, 31]. Because kernel-based solutions lack
high-level knowledge of application data structures, they must
rely on complex prefetching and eviction schemes to sufficiently
amortize the cost of remote transfers. Moreover, these solutions
are constrained by the architected page size of the hardware, and
have a higher bandwidth consumption stemming from I/O am-
plification [6]. Library-based systems overcome the performance
penalties of kernel-based systems but trade off transparency, i.e
they require source code modifications. AIFM, an exemplar of this
method, requires developers to replace existing data structures with
special structures provided by the runtime [25]. This enables the
runtime to determine prefetching and evacuation policies for each
data structure, and allows the runtime to select appropriate far
memory policies. A third alternative, the compiler-based approach,
requires only recompilation with a custom far memory compiler to
achieve both transparency and performance. Notable examples in-
clude Mira [11] and TrackFM [26]. However, due to the limitations
of static analysis, these compilers must either use profiling liberally,
or make conservative decisions about which objects to remote, and
when they should be prefetched and evacuated. For example, in
TrackFM, all objects are assumed to be remotable, since the com-
piler is unable to predict locality of access statically. information at
static time to make the right decisions. Mira takes an alternative
approach, using profiling traces to characterize data structures’
locality of access, thus informing remoting, prefetching and evacua-
tion policies. While profiling does side-step the compiler’s inability
to determine runtime access patterns, it still may require several
runs of the application to sufficiently capture representative traces.

In this paper, we seek to augment the compiler approach by
drawing inspiration from library-based approaches [25], which can
leverage user hints to identify and annotate remote data structures,
enabling the runtimes to make policy decisions dynamically. How-
ever, without user hints or profiling runs, the compiler is unable
to match this ability. First, source-level information (e.g., custom
data structures) that might help characterize a data structure can be
lost during compilation. Second, the compiler’s analysis passes are
limited to only static information, losing out on dynamic behavior
that can inform relevant runtime policies. We overcome the first
limitation by leveraging data structure analysis [13, 14] to auto-
matically recover data structure semantics during compilation. We
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overcome the second limitation by co-designing the compiler and
runtime, i.e., by passing compiler-identified data structure infor-
mation to the runtime. This enables the runtime to make policy
decisions on a per data structure basis dynamically and obviates
overly conservative policies. This approach is fully automatic and
does not require code changes.

2 Related Work
The most closely related compiler-based systems are Mira [11]
and TrackFM [26], which lack support for recursive data struc-
tures, and require profiling or overly conservative remoting policies.
Hardware-based far memory systems explore new data structures
to increase efficiency. For instance, Aguilera et al. propose novel
hardware primitives to improve data structure performance [1].
CXL hardware supports disaggregation at cache line granularity,
enhancing memory performance [7], but such hardware is still
scarce. CLIO introduces an advanced virtual memory system, cus-
tom network stack, and offloading capabilities to improve hardware
handling of far memory operations [12]. Similarly, KONA brings
updates to virtual memory systems, enabling support for smaller
object sizes [6]. Finally, MIND demonstrates how integrating mem-
ory management logic into the network fabric can maintain shared
memory coherence while enhancing performance [18]. CaRDS does
not require custom hardware, so can be used with commodity, off-
the-shelf hardware.

Sofware-based far memory has been implemented in both user-
space and in the kernel. Kernel-based solutions swap pages to far
memory over high-bandwidth RDMAnetworks [3, 10, 24, 30]. These
systems attempt where possible to take kernel page faults off the
critical path by leveraging asynchronous/offload mechanisms, and
by improving the prefetching and reclaim logic in the OS. Leap [2],
Canvas [28], and 3PO [5] explore prefetching and application isola-
tion techniques at runtime. Compiler prefetching for recursive data
structures has been explored for SMP systems [20, 21]. but relies
on virtual memory support that does not apply to far memory.

Finally, there is a large body of work we build on that focuses
on identifying data structure semantics at compile time. Existing
compilers have explored data structure analysis for SMPs [14], but
not in the context of disaggregated memory. SeaDSA extends and
improves these methods for software verification [13]. In CaRDS we
utilize SeaDSA to detect disjoint data structures and improve their
performance. Pool-based allocation for disjoint data structures [16],
shows the benefits of compiler-aware memory allocation for data
structures in SMP systems. CaRDS draws inspiration from the pool
allocation work and leverages similar ideas for far memory.

3 CaRDS Design
There are two fundamental challenges that limits a compiler’s abil-
ity to automatically transform an existing application’s data struc-
tures to use remote memory. The first challenge is the loss of in-
formation that occurs when source code is compiled down to an
intermediate representation (IR), in our case LLVM IR. The LLVM
type system does not recognize user-defined types, thus limiting
the flow of data structure information to middle-end transforma-
tion pipelines. In particular, for a particular load/store operation in
LLVM IR, there is no direct way to determine which data structure

the operation corresponds to. Identifying an application data struc-
ture enables the compiler to supply the runtime with both the data
structure’s prototypical access patterns and its allocation sites.

Our approach overcomes this limitation by building on prior
work in inter-procedural data structure analysis (DSA). DSA was
originally designed to identify connectivity between memory ob-
jects across the entire program. Unlike shape analysis [29], which
focuses on classifying data structures, DSA primarily concerns itself
with how memory objects are connected within a program, thus im-
proving compilation times for the analysis. In previous work, DSA
has been used to capture properties of memory objects, such as de-
termining whether they are type-safe or optimizing data structures
for memory efficiency [17]. Here, we leverage DSA to automatically
identify disjoint data structures, enabling their transformation into
remotable data structures [13, 16]. Additionally, DSA analysis is
context-sensitive, meaning it can identify specific instances of a
data structure. This capability is particularly useful for our pur-
poses, as it allows us to assign unique prefetching and remotable
policies to each instance.

To effectively enforce our policies for each data structure at run-
time, we need a way to link the compiler-identified data structures
to the application’s allocation requests and memory access patterns.
For example, when we see a memory allocation request—e.g., a
call to malloc—CaRDS must determine to which data structure
the allocation corresponds, and given the characteristics of that
data structure, whether or not the allocation should thus be re-
motable or not. Fortunately, prior work on pool allocation [16]
demonstrates how disjoint memory pools can be passed to the run-
time by leveraging data structure analysis. Specifically, the pool
allocation technique partitions heap data structure instances into
pools and passes pool handles to the runtime, allowing for memory
optimizations tailored to the data structure instances. In CaRDS,
we implement pool allocation to establish far memory policies for
each data structure.

The second challenge is that the allocation size of data struc-
tures are not always known at compile time. In CaRDS, we develop
policies that are co-designed with the runtime to address the lack
of runtime information at compile time. For example, the policy
for determining whether a memory allocation should be remotable
is evaluated at runtime in CaRDS. This is done by using compiler-
provided data structure information to identify the data structure
responsible for the allocation, while also considering runtime fac-
tors such as the memory usage on the system.

Figure 1 depicts the high-level architecture of CaRDS, which is
built atop TrackFM. Developers need only recompile their applica-
tion using our compiler framework to run their legacy application
using far memory.

1 int * ds1 , * ds2;
2 double * alloc() {
3 return malloc(ARRAY_SIZE);
4 }
5 void main() {
6 ds1 = alloc();
7 ds2 = alloc();
8 Set(ds1 , 0);
9 Set(ds2 , 1);
10 for (int k=0; k<NTIMES; k++)
11 Set(ds2 , k);
12 }
13 void Set(int * ds, int val) {
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Figure 1: High-level overview of CaRDS, which automatically
transforms an application to farmemory using both compile-
time and run-time techniques.

14 for (j=0; j<ARRAY_SIZE; j++)
15 ds[j] = val;
16 }

Listing 1: Example C code with two data structures.

4 Implementation
We first outline the compiler passes in CaRDS. We then describe
CaRDS’s remoting and prefetching policies, which do not require
code modifications or profiling runs.

Listing 1 depicts two data structures (ds1, ds2) that being ini-
tialized, with ds2 specifically being initialized within a loop. We
use this example to illustrate how the CaRDS compiler and runtime
information are combined to automatically transform data struc-
tures and make appropriate policy decisions, as discussed in the
following sections.

4.1 Compiler optimizations
CaRDS builds on NOELLE to construct its compiler passes [23].
NOELLE offers high-level, program-wide abstractions in turn built
LLVM IR [15].

{0:i32*}:GMR
<0, i32*>

Remote Policy: Non Local
Cache Policy: Non Temporal

Prefetch Policy: Strided

{0:i32}: Sequence SHM

0, i32*

{0:i32*}:GMR
<0, i32*>

Remote Policy: Local
Cache Policy: Temporal
Prefetch Policy: Strided

{0i32}: Sequence SHM

0, i32*

  %5 = call i32* @alloc()

0

  %4 = call i32* @alloc()

0

ds2
0

ds1
0

Figure 2: DSA analysis for Listing 1

DSA Pass. CaRDS leverages SeaDSA [13] to detect disjoint data
structures. This is an inter-procedural and context-sensitive analy-
sis, enabling it to capture more data structures than the prior DSA
approach [16]. Figure 2 shows the disjoint data structures identified
for Listing 1 by CaRDS. Notably, only heap-allocated data structures
are identified.

Algorithm 1 Lattner and Adve’s pool allocation algorithm [16].
1: for all 𝐹 ∈ functions(𝑃 ) do
2: seadsa::graph G = DSAGraphForFunction(F)
3: for all 𝑛 ∈ Nodes(𝐺 ) do
4: if (𝑛.𝑎𝑙𝑙𝑜𝑐 == 𝐻𝑒𝑎𝑝 𝑎𝑛𝑑 𝑒𝑠𝑐𝑎𝑝𝑒𝑠 (𝑛)) then
5: 𝑑𝑠_ℎ𝑎𝑛𝑑𝑙𝑒 ← 𝐴𝑑𝑑𝐷𝑆𝐻𝑎𝑛𝑑𝑙𝑒𝐴𝑟𝑔 (𝐹,𝑛)
6: 𝑑𝑠𝑚𝑎𝑝 (𝑛) ← 𝑑𝑠_ℎ𝑎𝑛𝑑𝑙𝑒
7: 𝑎𝑟𝑔𝑛𝑜𝑑𝑒𝑠 (𝐹 ) ← argnodes(F)𝑈 {𝑛}
8: else// Node is local to fn
9: 𝑑𝑠_ℎ𝑎𝑛𝑑𝑙𝑒 ← 𝐷𝑆_𝐼𝑁 𝐼𝑇 (𝐹,𝑛)
10: 𝑑𝑠𝑚𝑎𝑝 (𝑛) ← 𝑑𝑠_ℎ𝑎𝑛𝑑𝑙𝑒
11: end if
12: end for
13: end for
14: for all 𝐹 ∈ functions(𝑃 ) do
15: for all 𝐼 ∈ instructions(𝐹 ) do
16: if 𝐼 𝑖𝑠𝑎 𝑚𝑎𝑙𝑙𝑜𝑐 𝑐𝑎𝑙𝑙𝑖𝑛𝑠𝑡 then
17: replace I with dsalloc(size,dsmap(N(ptr)))
18: else if 𝐼 𝑖𝑠𝑎 𝑐𝑎𝑙𝑙𝑖𝑛𝑠𝑡 then
19: for all 𝑛 ∈ ArgNodes(𝐶𝑎𝑙𝑙𝑒𝑒) do
20: 𝑎𝑑𝑑𝐶𝑎𝑙𝑙𝐴𝑟𝑔 (𝑑𝑠𝑚𝑎𝑝 (𝑁𝑜𝑑𝑒𝐼𝑛𝐶𝑎𝑙𝑙𝑒𝑟 (𝐹, 𝐼 , 𝑛) ) )
21: end for
22: end if
23: end for
24: end for

Pool Allocation. After identifying disjoint data structures, CaRDS
conveys the extracted information to the runtime by utilizing the
pool allocation algorithm shown in Algorithm 1. Since the origi-
nal implementation of this algorithm was not actively maintained
with newer LLVM versions, we reimplemented it for our purposes
in the NOELLE framework. Unlike the original algorithm, which
employs bottom-up, inter-procedural analysis to identify disjoint
data structures, CaRDS uses context-sensitive disjoint data struc-
tures identified by our DSA analysis and passes them to the pool
allocation algorithm 1.

1 double * alloc(int DH) {

2 return cards_malloc(ARRAY_SIZE, DH);

3 }
4 void main() {
5 // ds_init(ds_id , cache_policy , prefetch_policy ,
6 remote_policy)

7 int dh1 = ds_init(1, false, STRIDED, REMOTABLE);

8 int dh2 = ds_init(2, true, STRIDED, LOCALIZE);

9 ds1 = alloc(dh1);

10 ds2 = alloc(dh2);

11 }

Listing 2: CaRDS pool allocation transformation for Listing 1

The algorithm is used to initialize data structures and link mem-
ory allocations sites to their corresponding data structures. It works
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in two phases. In the first phase (lines 1–13), the algorithm modi-
fies functions in the program that might allocate memory on the
heap. This includes both direct calls to malloc and indirect calls
that eventually lead to malloc The algorithm uses a map, dsmap,
to track a handle for each data structure. If a function returns a
pointer or passes it outside the function (rendering it an escaping
pointer), the algorithm adds extra arguments to the function to
handle the data structure properly. If the pointer does not escape,
the algorithm inserts a call into the CaRDS runtime to initialize
the data structure, and the handle is saved in dsmap. In the second
phase (lines 14–24), the algorithm updates the functions to include
the data structure handles from dsmap as arguments. This ensures
that any function that calls the modified functions from the first
phase knows which data structure it is working with, so memory
can be managed correctly at runtime. For more details on pool
allocation, readers are referred to the original paper [16].

Listing 2 illustrates how CaRDS pool allocation transforms List-
ing 1 and employs pool allocation to segregate data structures with
different prefetch and remoting policies. Each data structure is as-
signed a unique handle, DH, that is appended to the non-canonical
bits of a pointer, facilitating the mapping of pointer addresses to
their corresponding data structures.

Prefetching analysis. In this pass, we gather application type
information in the LLVM IR and utilize induction variable analysis
to identify sequential access patterns. The CaRDS compiler analysis
operates at the level of individual data structures, with each data
structure assigned its own prefetching policy. Figure 2 highlights
the data structures with strided access patterns identified at compile
time for Listing 1.

Redundant guard elimination. In a far memory system, memory
accesses to data structure objects can take place either when the
objects are located in local memory or in remote memory. In line
with previous far memory compiler systems, CaRDS automatically
inserts guard checks on memory instructions to ensure proper local-
ization of objects (safety). Unlike TrackFM’s optimizations, which
only apply to induction variables, CaRDS guard optimizations apply
to non-induction variables as well, allowing it to work with more
complex data structures.

1 void Set(int * ds, int val) {

2 remote = check_remotable_policy(ds); // loop v1

3 if (remote) {

4 for (j=0; j<ARRAY_SIZE; j++) {

5 if (safe_to_access(&ds[j]))

6 ds[j] = val;
7 }
8 } else {
9 for (j=0; j<ARRAY\_SIZE; j++) // loop v2
10 ds[j] = val;
11 }
12 }

Listing 3: CaRDS selective remoting transformation for
Listing 1.

Selective remoting. The advantage of treating some data struc-
tures as non-remotable is that accesses to them (perhaps because
they exhibit very little spatial or temporal locality) can elide guard
overheads. However, this elision is not always feasible at compile

Table 1: Comparison of primitive overheads for CaRDS and
TrackFM. Costs are reported in median cycles over 100 trials.

Runtime Event Local Cost Remote Cost

CaRDS read fault 378 59K
CaRDS write fault 384 59K
TrackFM read guard 462 46K
TrackFM write guard 579 47K

time due to a lack of runtime information. Since the memory access
pattern associated with a data structure is unknown at compile time,
it is in general not possible to determine whether the data structure
should be marked as remotable at compile time. This limitation
can be mitigated through profiling or using techniques like loop
peeling, where certain iterations of a loop are peeled out. These
peeled iterations can be used at runtime to help decide whether the
larger loop should be remotable. However, determining the number
of profiling runs or loop iterations needed to make an accurate
decision is not always straightforward. Instead, in CaRDS, we use
code versioning by maintaining two versions of the code: one that is
instrumented and another that is not. The uninstrumented version
is selected only if all data structures are deemed localized, ensuring
that unnecessary instrumentation is avoided.

Listing 3 demonstrates our transformation applied to Listing 1.
Before executing a loop, the CaRDS compiler injects a call into the
runtime to check whether the data structures used within the loop
are remotable. If all data structures are marked as non-remotable,
the execution branches to the uninstrumented version.

4.2 CaRDS runtime system
CaRDS utilizes a modified version of the AIFM runtime to manage
far memory objects at the granularity of data structures. During
compile time, CaRDS identifies disjoint data structures and assigns
each a unique data structure ID, which is employed at runtime, as
illustrated in Listing 2. The data structure ID is appended to the
non-canonical bits of pointer addresses during memory allocation
calls to manage these associations. CaRDS monitors cache hits and
misses for each memory object, leveraging these statistics on a
per-data structure basis to inform runtime policy decisions. Unlike
previous compiler-based far memory systems, CaRDS allows policy
decisions such as prefetching and remotability at the individual data
structure level, offering finer control over memory management.

0: shr    $0x30,%rcx           // custody check (is this CARDS-managed ptr?)
1: je     4                            // if not, perform original load/store 
2: callq  <card_deref_fn> // otherwise, runtime call  
4: mov    %rbx,(%rax)      // TARGET LOAD/STORE 

Figure 3: CaRDS guard lowered to x64 code.

CaRDS guards. CaRDS manages far memory at the object level,
allowing for objects of arbitrary sizes to reside in either local or
remote memory. To ensure memory safety, it is essential to localize
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1 uint64_t cards_deref(uint64_t addr) {
2 //get ds handle from non canonical bits
3 uint64_t ds_id = (addr >> ORT_POS);
4
5 DS * ds = ds_list[ds_id];
6
7 //map address to object
8 uint64_t ind = off >> ds->obj_shift;
9
10 FarMemPtr * obj = ds->pool_manager ->ptrs_[ind];
11
12 //if object already in local memory
13 if (safe_to_access(obj))
14 return obj.paddr;
15
16 // fetches object over the network
17 LocalizeObject(ds, ind , obj);
18
19 return obj.paddr;
20 }

Listing 4: CaRDS deref function.

an object before access; CaRDS does this by injecting guards on
accesses to objects.

In CaRDS, an object may map to multiple addresses, determined
by its size. The size of an object is guided by compiler hints provided
to the runtime during the data structure initialization (ds_init).
For instance, a declaration like char ds[4096] could correspond
to a single CaRDS object if the object size for the data structure is
set to 4K. Consequently, CaRDS data structures can have varying
object sizes based on the static hints given by the compiler.

Figure 3 illustrates a CaRDS guard check. If a memory address
has its non-canonical bits (bits 48-63) set (known as a custody
check), CaRDS injects a call to the cards_deref function. This
function is responsible for ensuring memory safety. It first maps
the higher-order address bits to their corresponding data structure
and then uses the lower address bits to associate with the actual
object. Following this mapping phase, the system checks whether
an object is localized; if it is not, CaRDS calls into the AIFM runtime
to fetch the object. CaRDS injects guard checks once for every
object access within a loop. If multiple memory locations map to
the same object, a check occurs only once, thanks to the redundant
guard optimization described above.

Remoting policy selection. CaRDS manages local memory by di-
viding it into two categories: pinned memory, which cannot be re-
moted, and remotable memory, from which data structures marked
as remotable are allocated. The system uses a custom libc to control
memory allocations, associating each allocation with a specific data
structure. During an allocation, CaRDS evaluates static information
about the data structure provided by the compiler to determine if
the memory should be allocated from remotable memory.

The primary challenge in determining whether a data structure
should be non-remotable is that the size of the data structure may
not be known at compile time, which complicates the decision
on which data structures should be localized. Previous compiler
approaches have relied on profiling to first determine the sizes
of memory objects, and then, in subsequent runs of the program,
decide whether the object should be remotable. For example, in
Mira [11], a memory profiler is used to determine allocation sizes,
and only those objects with large sizes are further analyzed to

decide on the appropriate far memory policies. In contrast, CaRDS
addresses this challenge by developing policies that are independent
of data structure size. Rather than relying on memory size, CaRDS
uses a tunable parameter which determines the percentage of data
structures that should use non-remotable memory. Ideally, this
parameter is set higher when more local memory is available and
lower whenmemory is limited, offering amore dynamic and flexible
approach to memory management.

Due to limited runtime information, it is sometimes impractical
to make accurate decisions about remoting at compile time. To
address this, the CaRDS runtime can override static hints as needed.
For example, if a data structure does not fit in local memory despite
a static hint for localization, the runtime may choose to remote
it. In cases where dynamic data structures grow during execution,
the runtime tracks allocations to ensure they remain local. This
allows certain code paths to execute without instrumentation for
non-remotable data structures. When a data structure is remoted,
CaRDS ensures use of the instrumented code path.

Below, we outline several policies that can enhance the selection
of data structures to be localized based on static code information:

Linear Assignment. This policy allocates pinned memory (non-
remotable) sequentially in program order, switching to remotable
memory once local memory is exhausted.

Random Assignment. This policy allocates pinned memory ran-
domly for memory allocations.

Maximum Reach. This policy prioritizes data structures used in
functions with long caller/callee chains, marking them as local (non-
remotable) at compile time. CaRDS uses the strongly connected
components (SCC) call graph to identify which functions access a
particular data structure. When pinned memory is fully utilized,
CaRDS defaults to remotable memory. The data structures used in
the top k functions with long caller/callee chains are marked as
non-remotable.

Maximum Use. This policy prioritizes data structures with high
memory usage as non-remotable candidates. The top k data struc-
tures are marked as non-remotable, ensuring that frequently used
data structures remain local.

𝑑𝑠 = 𝑀𝐴𝑋 (#𝑙𝑜𝑜𝑝𝑠 + #𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠) (1)
In Listing 1, we observe that ds2 has a higher usage than ds1 and

benefits more from localization. By implementing the policy that
prioritizes data structure usage, CaRDS can make more informed
decisions; using the linear policy may lead to suboptimal choices.
In Figure 4, we compare various policies for Listing 1, allowing one
of the data structures to be localized based on compiler policy by
setting the threshold parameter k = 50%. Both data structures in
Listing 1 are allocated 3 GB of memory. When 50% of local memory
is available, one of the data structures can be localized. A naïve
policy would localize ds1, while a refined policy correctly localizes
ds2, resulting in improved performance by minimizing network
communication, as shown in Figure 4.

Prefetching Policy Selection. A variety of prefetching policies are
available, each differing in complexity, specificity, and aggressive-
ness. For CaRDS, we have chosen to support existing compiler
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Figure 4: CaRDS performance across different remotable
policies for Listing 1 when top k=50% of data structures are
marked as non-remotable.

prefetchers, including a majority stride-based prefetcher, a greedy
recursive prefetcher, and a jump pointer prefetcher [22]. Based on
the static and dynamic information available for each data struc-
ture, CaRDS selects the most appropriate prefetch policy. Standard
prefetching metrics, such as accuracy and coverage, are used to
evaluate the effectiveness of each prefetching policy. The combina-
tion of static and dynamic information per data structure creates
opportunities for advancing prefetching algorithms in CaRDS.

5 Preliminary Evaluation
CaRDS combines static and runtime information to determine op-
timal far-memory policies for each data structure. Our evaluation
assesses the performance impact and advantages of combining com-
piler and runtime optimizations at the granularity of data structures,
enabling informed decisions on remoting and prefetching policies.
We then demonstrate that CaRDS serves as a viable, non-profiling
alternative, outperforming conservative methods while maintain-
ing acceptable performance relative to profiling-based approaches.
Our evaluation aims to address the following questions:
• How does CaRDS’s remoting policies benefit applications?
(§5.1)
• How does CaRDS’s prefetching policies benefit applications?
(§5.2)
• How does CaRDS perform with realistic applications? (§5.3)

Experimental setup: Our experiments were conducted on
CloudLab [8] with two x170 machines, each with 10-core Intel
Xeon E5-2640v4 2.4 GHz CPUs. These machines have 64GB RAM
and a 25 Gb/s Mellanox ConnectX-4 NIC. We used Ubuntu 18.04,
Linux kernel version 5, and DPDK version 18.11 (also used by AIFM).
CaRDS builds on LLVM version 14.0.6, 1 with NOELLE v14.1.0.2

Application benchmarks. We select three benchmarks to evaluate
CaRDS, among which the analytics benchmark and breadth-first
search (BFS) represent common access patterns in the wild.

analytics workload is a data analytics application that uses the
2014 NYC taxi trip dataset from Kaggle3 to analyze New York City

1commit f28c006
2commit 68f334a
3kaggle.com/code/kartikkannapur/nyc-taxi-trips-exploratory-data-analysis/
notebook

taxi trips. We choose this benchmark to compare against existing
far-memory compilers (both profiling and conservative) and vali-
date our results against TrackFM [26]. For Mira, we were unable to
reproduce the NYC benchmark due to the incomplete Mira imple-
mentation4; instead, we use a projected curve based on the results
from their paper [11]. The memory working set size for the taxi-trip
workload was 31 GB, and the dataset size was 16 GB.

Next, we choose a widely used benchmark suite, PolyBench,
which is a collection of benchmarks with static control parts [9].
Within PolyBench, we select ftfdapml (Finite Difference Time Do-
main Kernel using Anisotropic Perfectly Matched Layer), which is
used to simulate optical devices and model electromagnetic wave
interactions with materials. We select ftdapml because it has the
largest number of data structures in the PolyBench suite, making
it useful for evaluating remoting policies in CaRDS. The memory
working set size of ftdapml is 8 GB.

Finally, we select BFS, a graph workload commonly used in dat-
acenters. BFS is characterized by an irregular access pattern. We
use the BFS benchmark from the GAPS benchmark suite [4]. The
memory working set size for BFS is 1.2 GB.

5.1 Evaluation of CaRDS remoting policy
In far memory systems, ideally, hot data structures should not be
remotable (i.e., they should use pinned local memory) to avoid
the cost of network fetches. However, marking a data structure
remotable becomes necessary if their memory requirements exceed
a single server’s capacity. In this section, we evaluate CaRDS’s
remoting policies, which are determined dynamically without pro-
filing or conservative assumptions, and compare themwith existing
profiling and conservative compilers.

Figures 5 to 7 compares the remoting policies of CaRDS (as
discussed in Section 4) across three application benchmarks. As
local memory increases, more data structures are designated as
non-remotable, meaning their memory allocations are pinned to
local (non-remotable) memory. These figures show that selectively
remoting data structures can improve application performance by
up to ∼2×, especially when sufficient local memory is available.

For the analytics workload, CaRDS allocates available local mem-
ory by setting aside 1 GB for remotable memory, while the remain-
ing local memory is used for pinned memory, if available. CaRDS
identifies 22 disjoint data structures at compile time, each of which
is assigned a dedicated prefetcher and a custom remote policy man-
ager. Since the sizes of these data structures are not known at
compile time, CaRDS includes a tunable parameter, k, that controls
the percentage of data structures to be localized.

When all data structures are localized (k = 100), the policies ex-
hibit similar performance, except for the random policy. However,
as the number of localized data structures decreases, the effective-
ness of each policy varies. The “Max Reach” policy proves to be
more resilient to selective remoting. In scenarios where the applica-
tion’s local memory exceeds 90%, a linear policy suffices because all
data structures can be localized on demand. Unlike other policies
that statically assign certain data structures to be remotable, the
linear policy makes decisions at runtime.

4https://github.com/WukLab/Mira
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Figure 5: CaRDS remotable policies for BFS where we increase the amount of data structures to be localized from left to right.
The linear policy is unaffected even when the top 25% of data structures are localized.
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Figure 6: CaRDS remoting policies for the analytics workload, where we increase the amount of data structures to be localized
from left to right. The “Max Reach” policy is unaffected even when data structures are localized only in top 25% of functions.
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Figure 7: CaRDS remoting policies for ftfdapml where we increase the amount of data structures to be localized from left to
right. The “Max Reach” policy is unaffected even when data structures are localized only in top 25% of functions.

In Figure 7 we allocate 1 GB of remotable memory for the ftf-
dapml benchmark, with the remainder designated for pinned (non-
remotable) memory. CaRDS identifies 15 disjoint data structures at
compile time, with certain data structures requiring more memory
than others. The “Max Use” policy performs better when k ex-
ceeds 25%. Additionally, both the “Linear” and “Max Reach” policies

demonstrate greater tolerance to selection changes, achieving per-
formance that is approximately ∼4× better than the all-remotable
configuration.

In Figure 5, the BFS benchmark is allocated 256 MB for remotable
memory, with the rest designated for pinnedmemory. CaRDS identi-
fies 19 disjoint data structures, with varying memory requirements
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Figure 8: CaRDS performance compared to prior far memory compilers. CaRDS is within 20% of Mira when local memory is
less than 25%, and outperforms TrackFM consistently when more than a few data structures are localized.

among them. The “Linear” policy consistently outperforms other
policies across different selections of data structures.

When all data structures are marked as remotable, approximately
10 billion guard checks are performed across the three benchmarks,
which can become prohibitively expensive when sufficient local
memory is available. Importantly, these policies not only eliminate
guard checks but also reduce network communication.

In summary, Figures 5 to 7 demonstrate that, with the exception
of the random policy, all other policies enhance the efficiency of far
memory systems compared to the conservative approach of mark-
ing all data structures as remotable candidates. When objects are
conservatively designated as remotable at compile time, they can
lead to performance overheads in both scenarios: when local mem-
ory is limited and when it is adequate. Specifically, if local memory
is constrained and all data structures are marked as remotable, the
system incurs frequent network requests to retrieve objects. On the
other hand, when local memory is plentiful, the system suffers from
the overhead associated with static guard checks. In both situations,
marking all objects as remotable can result in considerable network
and instrumentation overheads. Thus, selectively remoting data
structures using even simple policies like linear assignment proves
to be more effective than overly conservative approaches.

5.2 Evaluation of CaRDS prefetch policy
CaRDS identifies disjoint data structures within an application, with
each structure having its own dedicated prefetcher. We assess the
advantages of this separation by comparing CaRDS to TrackFM.
In Figure 9, we analyze various data structures that perform the
sum operation (c[i] = a[i] + b[i]). The memory working set
size is set to 7 GB, and we measure the speedup of CaRDS relative
to TrackFM. Our findings show that data structures with easily
discernible induction variables, such as array sums, run efficiently
om TrackFM. However, for pointer-chasing benchmarks like C++
vectors and maps, CaRDS consistently outperforms TrackFM since
TrackFM relies only on induction variables for prefetching.
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Figure 9: CaRDS speedup compared to TrackFM for pointer
chasing data structures. As CaRDS can identify disjoint data
structures that have their own prefetchers, CaRDS outper-
forms TrackFM consistently.

5.3 Application study
Figure 8 compares the performance of CaRDSwith prior farmemory
compilers. We observe that CaRDS achieves performance that falls
between profiling and non-profiling compilers for the analytics
workload. Notably, CaRDS consistently outperforms TrackFM by
up to approximately 2×, especially when more than 50% of the
local memory is available. With 25% of non-remotable memory,
CaRDS is within 20% of the performance of Mira (profile-based
compiler). However, as the available local memory increases, Mira
surpasses CaRDS. We aim to explore improved policies to close
this gap further in future work. For the other benchmarks, CaRDS
consistently outperforms TrackFM.

6 Conclusions
We present CaRDS, a prototype compiler-assisted far memory sys-
tem that automatically transforms data structures into remotable
ones. Through experiments, we have demonstrated that efficient
remoting and prefetching policies can be determined dynamically,
without profiling, by integrating runtime and static information at
the data structure level. CaRDS outperforms previous non-profiling
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compiler systems by up to ∼2× and comes within 25% of profiling-
based compilers when local memory is constrained.
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